
3D Localization in Large-Scale Wireless Sensor

Networks: A Micro-Differential Evolution

Approach

Hojjat Salehinejad, Student Member, IEEE, Robert Zadeh, Student Member, IEEE,

Ramiro Liscano, Senior Member, IEEE, and Shahryar Rahnamayan, Senior Member, IEEE

Department of Electrical, Computer, and Software Engineering, University of Ontario Institute of Technology,

2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada

Email: {hojjat.salehinejad, robert.zadeh, ramiro.liscano, shahryar.rahnamayan}@uoit.ca

Abstract—Most of the recent proposed approaches for sen-
sor(mote) localization are focused on 2-D environments with
limited functionalities. This is mostly due to the nature of
problem which is non-linear, large-scale, and has limited hard-
ware resources. The micro-evolutionary algorithms (MEAs)
utilize a small-size population to solve optimization problems.
Therefore, such algorithms require much less processing time
and memory than standard evolutionary algorithms (EA),
suitable for implementation on embedded systems. In this paper,
a novel protocol for localization of motes in 3-D environments
is proposed, simulated, and discussed. The localization problem
is modeled as an optimization problem. The proposed model
is based on a realistic approach to the localization problem,
where possible errors and noises in the localization procedure
such as signal strength detection are addressed. To present a
suitable approach to solve the proposed optimization model,
a comparative study on performance of the micro-differential
evolution (MDE) algorithms is performed and the results are
discussed.

Index Terms—Localization, Micro-Differential Evolution
(MDE), Wireless Sensor Networks (WSNs).

I. INTRODUCTION

Complexity of problems dealing with wireless sensor

networks (WSNs) are increasing tremendously. Some of the

challenges facing WSNs are spectrum assignment [1] and

power management [2]. One of the main challenges is finding

the exact location of the mote (sensor), called localization

problem. Even though a simple and fast idea to overcome

this problem is equipping each mote with geographical

positioning system (GPS) modules; however such power

hungry systems not only require line-of-sight connection with

satellites but also are expensive in comparison with the mote

cost itself, particularly for large-scales deployments [3].

Evolutionary algorithms (EAs), such as differential evolu-

tion (DE) algorithm, are state-of-the-art methods for solving

real-world problems [4]. The term micro-algorithm refers

to population-based algorithms with a small population size

[5]. The micro-algorithms generally suffer from lack of

diversity in the population, which limits the exploration of

algorithm for feasible solution. To overcome this problem

for micro-differential evolution (MDE) algorithms, methods

such as micro-differential evolution with scalar random mu-

tation factor (MDESM) and micro-differential evolution with

vectorized random mutation factor (MDEVM) are proposed

[5]. The sensor localization problem is formulated as a

NP-hard optimization problem [6]. In order to solve such

problems, traditional analytical optimization techniques such

as quadratic programming and interior-point methods require

enormous computational efforts [6], [7]. Therefore, high

performance optimization methods with moderate usage of

computational resources are of interest. Soft computing algo-

rithms such as genetic algorithm (GA) [9], particle swarm op-

timization (PSO) [6], and artificial neural networks (ANNs)

[10] have been employed for localization in WSNs. In this

paper, the localization problem is modeled as an optimization

problem and a comparative study on performance of the

MDE algorithms family is conducted.

The next section reviews the DE algorithm. In Section III,

the proposed approach is discussed and then evaluated in

Section IV. Finally, the paper is concluded in Section V.

II. DIFFERENTIAL EVOLUTION

The DE algorithm works based on the scaled difference

between two individuals of a population’s set, where the scal-

ing factor is called the mutation factor [12]. In DE algorithm,

the population P = {X1, ...,XNP } consists of NP vectors

in generation g, where Xi is a D-dimensional vector defined

as Xi = (xi,1, ..., xi,D). A simple DE algorithm consists of

the following steps:

Mutation: This step selects three vectors randomly from

the population such that i1 6= i2 6= i3 6= i, where

i ∈ {1, ..., NP} and NP ≥ 4 for each vector Xi. The mutant

vector is calculated as

Vi = Xi1 + F (Xi2 − Xi3), (1)

where the factor F ∈ (0, 2] is a real constant number, which

controls the amplification of the added differential variation

of (Xi2 −Xi3). The exploration of DE increases by selecting

higher values for F .

Crossover: The crossover operation increases diversity of

the population by shuffling the mutant and parent vector as

follows:

Ui,d =

{
Vi,d, randd(0, 1) ≤ Cr or drand = d
xi,d, otherwise

, (2)

where d = 1, ..., D, Cr ∈ [0, 1] is the crossover rate
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Fig. 1. Motes deployment on a sample landscape and corresponding
localization with assistance of a UAV, flighting on a random path and
broadcasting a detection signal on the landscape.

Fig. 2. Sample signal coverage model for four detected coordinates (DC)
assisting mote localization.

parameter, and rand(a, b) generates a random number in the

interval [a, b] with a uniform distribution. Therefore, the trial

vector Ui ∀i ∈ {1, ..., NP} can be generated:

Ui = (Ui,1, ..., Ui,D). (3)

Selection: The Ui and Xi vectors are evaluated and com-

pared with respect to their fitness values; the one with better

fitness is selected for the next generation.

A. Micro-Differential Evolution

The reduced population size in the MDE algorithm, i.e.

NP ≤ 5, decreases the computational time dramatically.

However, the population size reduction increases the risk

of stagnation as well as premature convergence in finding

the global optimum solution. The stagnation is not the same

as premature convergence. During stagnation, the population

remains non-converged but divert and the optimization pro-

cess does not progress. A large population size offers a more

diversified pool of individuals whose recombination offers

higher likelihood to locate the global solution [5]. Therefore,

reducing the population size while raising the diversity of

the population is a key point to achieve a faster convergence

speed while maintaining a low risk of premature convergence

or stagnation.

B. Micro-Differential Evolution with Vectorized Random

Mutation Factor

The mutation factor F plays a major role to deliver

diversity into population. The mutation factor F in the DE

Fig. 3. Timing-diagram of packets arrival from four detection coordinates
(DCs) to the mote.

algorithm is typically a constant mutation factor (CMF),

generally set to F = 0.5 [5]. In order to deliver diversity to

the population, two ideas are proposed recently [5]. The first

one is utilizing a random mutation vector for all individuals

in each generation in a scalar manner, i. e. the MDESM

method. In this case, the mutation factor is considered as

Fi = rand(0.1, 1.5), ∀i ∈ {1, ..., NP }. (4)

The second idea is utilizing a random vector (not scalar) F
for each individual in the population is proposed in [5], the

MDEVM algorithm. In this algorithm, for each individual i
in the population vector, Fi = rand(0.1, 1.5) selects a value

randomly from the interval [0.1, 1.5]. Therefore, the mutation

factor can be defined for each individual i as

Fi = {Fi,1, ..., Fi,D}, ∀i ∈ {1, ..., NP }, (5)

where Fi,j = rand(0.1, 1.5), ∀j ∈ {1, ..., D}, [5].

III. PROPOSED MOTE LOCALIZATION SCHEME

In this section, the proposed protocol for mote localization

in WSNs is presented.

A. Localization Protocol

In real-world applications of WSNs, such as temperature

detection in jungles, the motes are deployed randomly on

the landscape using air-crafts such as UAVs. In most cases,

the motes are not time-synchronized with each other or

with their outer environment. In order to localize motes

after deployment, we have proposed a protocol as presented

in Figures 2 to 3. In the proposed topology, after deploy-

ments of sensors on the landscape, the UAV flights on the

landscape and broadcasts a signal every ∆ti seconds, after

flying a distance ∆Xi as denoted in Figure 2. The message

package sent from the UAV is consisted of the packet

identification number Pi, time sent ti, UAV current position

DCi = (XDCi
, YDCi

, ZDCi
), UAV flied distance from last

position DCi−1 to current position DCi, i.e. ∆Xi−1, and

UAV average speed from last sent package at time ti−1

to ti, i.e. ∆Vi−1. Each sensor on the landscape S receive

a number of packages NS . Since we are considering the

asynchronous mode, which is a more challenging mode than
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the synchronized mode, the first received packet is used to

set the detection clock of sensor to T1 as denoted in the

timing diagram illustrated in Figure 3. As the time passes

and arrives to T2 on the sensor detection clock, that is the

time second packet is received, the sensor calculates the time

td2 spent on packet signal arrival from UAV at position DC2

to sensor by using the timing relation as

T2 = T1 +∆t1 + td2, (6)

where ∆t1 is the time UAV spends to fly from DC1 to DC2.

By having td2 in mind, the distance from detected position

of UAV DC2 to the sensor location (Xs, Ys, Zs) is estimated

as d2 = VEM ×td2 where VEM is the electromagnetic signal

speed set to 2.99 × 108m/sec, [11]. The same procedure is

repeated for the other NS received packets in the general

form

tdi = Ti − (Ti−1 +∆ti−1), (7)

where the distance between each DCi and the sensor location

(Xs, Ys, Zs) is computed as di = VEM × td2. The above

procedure is conducted for each sensor separated from the

rest of sensors on the landscape in a standalone manner.

By estimating the distances di ∀i ∈ {1, ..., NS} from all

received detection coordinates DCis to the sensor location

(Xs, Ys, Zs), the sensor localization problem can be mod-

eled.

B. Localization modeling

By considering the DCi ∀i ∈ {1, ..., NS} coordinates as

well as the estimated distances di ∀i ∈ {1, ..., NS} to the

UAV by each mote, the location of mote, i. e. (Xs, Ys, Zs),
can be estimated by intersection of NS ≥ 3 spheres for

a 3-D environment, where the interconnection point is the

estimated mote location. However, as it is demonstrated in

Figure 4 for a typical 2-D localization problem, in real-

world scenarios many errors may occur during the local-

ization procedure such as signal coverage model which is

not ideally a sphere, communication channel estimation and

modeling, signal path loss and fading, computational errors

for instance in speed of UAV or speed of electromagnetic

waves, and etc. Therefore, solving the ideal model achieved

by interconnecting of spheres is not a realistic approach due

to the existence of an additive estimation error between the

computed interconnection of spheres and the exact location

of mote. To overcome this problem, the additive estimation

error is considered in our modeling. In this approach, on the

average an equal error for each estimated distance di between

detection coordinated and the sensor location is assumed.

By having NS detection coordinates, the sphere equation

for spheres i ∈ {1, ..., NS} is defined as






(Xs −XDC1
)2 + (Ys − YDC1

)2 + (Zs − ZDC1
)2 = d2

1

...
...

...
...

(Xs −XDCNS
)2 + (Ys − YDCNS

)2 + (Zs − ZDCNS
)2 =

d2NS
,

(8)

where by summing up the equations we will have

NS∑

i=1

((Xs−XDCi
)2+(Ys−YDCi

)2+(Zs−ZDCi
)2) =

NS∑

i=1

d2i .

(9)

By considering the estimated distances as d̃i∀i ∈ {1, ..., NS}
and ei as the distance estimation error, the exact distance is

defined as

di = d̃i + ei (10)

where its square is

d2i = (d̃i + ei)
2 (11)

By adding up the Eq. (11) for i ∈ {1, ..., NS} we have

NS∑

i=1

d2i =

NS∑

i=1

(d̃i + ei)
2. (12)

Then, by substituting Eq. (12) into Eq. (9) we have

NS∑

i=1

((Xs −XDCi
)2 + (Ys − YDCi

)2 + (Zs − ZDCi
)2)

︸ ︷︷ ︸

A

=

NS∑

i=1

(d̃i + ei)
2.

(13)

By expanding the right side of Eq. (13) and replacing the

left side with A, we have

A =

NS∑

i=1

d̃2i + 2

NS∑

i=1

d̃iei +

NS∑

i=1

e2i (14)

where by considering equal errors for all estimations as e =
ei ∀i ∈ {1, ..., NS}, we can simplify Eq. (14) and arrive to

a quadratic equation as

NSe
2 + (2

NS∑

i=1

d̃i)e+ (

NS∑

i=1

d̃2i −A) = 0. (15)

By solving the Eq. (15) for e, the possible solutions are

e =

−2
NS∑

i=1

d̃i ±

√

(2
NS∑

i=1

d̃i)2 − 4Ns(
NS∑

i=1

d̃2i −A)

2NS

(16)

where the negative part of the square root is not applicable.

Since we are willing to minimize the estimation error, e, the

sensor localization problem can be defined as an optimization

problem such as

min(e) = min

−
NS∑

i=1

d̃i +

√

(
NS∑

i=1

d̃i)2 −Ns(
NS∑

i=1

d̃2i −A)

NS
(17)

where the sensor exact location coordinates, i. e.

(Xs, Ys, Zs), are the variables of the optimization problem.
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(a) Original signal coverage, estimated signal
coverage, and estimated sensor location.

(b) Exact sensor location, estimated sensor location, and
estimation error.

Fig. 4. Sample signal coverage model for three detected coordinates (DC) in a 2-D environment.

Algorithm 1 Micro-Differential Evolution with Scalar

Mutation (MDESM) for Sensor Localization

1: Procedure MDESM
2: g = 0 //Initial Population Generation
3: for i = 1 → NP do
4: for d = 1 → D do
5: Xi,d = xmin

d + rand(0, 1)× (xmax
d − xmin

d )
6: end for
7: P

g
i = Xi

8: end for//End of Initial Population Generation
9: while (|BFV − V TR| > EV TR & NFC < NFCMax) do

10: for i = 1 → NP do
//Mutation

11: Select three random population vectors from Pg where
(i1 6= i2 6= i3 6= i)

12: F = rand(0.1, 1.5)
13: for d = 1 → D do
14: Vi,d = Xi1,d + F (Xi2,d − Xi3,d)
15: end for

//End of Mutation
//Crossover

16: for d = 1 → D do
17: if rand(0, 1) < Cr or drand = d then
18: Ui,d = Vi,d

19: else
20: Ui,d = xi,d

21: end if
22: end for

//End of Crossover
//Selection

23: if f(Ui) ≤ f(Xi) then
24: X′

i = Ui

25: else
26: X′

i = Xi

27: end if
//End of Selection

28: end for
29: Xi = X′

i, ∀i ∈ {1, ..., NP }
30: g = g + 1
31: Pg = {X1, ...,XNP

}
32: end while

C. Solving Localization Model

By modeling the sensor localization problems as the

optimization problem in Eq. (17), each sensor can utilize

the MDESM algorithm (or MDEVM algorithm for more

complex problems) [5] to find its own (Xs, Ys, Zs) location.

The pseudocodes of the MDESM algorithm is presented

in Algorithm 1. The termination criterion is met when the

difference between best fitness value (BFV ) and fitness

value to reach (V TR) is less than fitness error-value-to-reach

(EV TR), or the searching procedure exceeds the maximum

number of function calls NFCMax.

IV. SIMULATION RESULTS

In section, performance of the proposed protocol is eval-

uated by presenting a comparative study on performance of

using the MDE family algorithms.

A. Parameters Setting

To simulate the sensor localization problem, 50 sensors

are deployed randomly on the landscape illustrated in Figure

1 and the UAV has broadcasted 256 DC messages on the

landscape, following a random flight path. The parameter

setting of algorithms for all simulations are set as in Table I.

The reported values are averaged for NRun independent runs

per sensor localization per algorithm to minimize the effect

of the stochastic nature of the algorithms on the results [5].

B. Performance Evaluation

In order to study the effect of number of received packets

by each sensor in sensor localization performance, the simu-

lations are performed for NS ∈ {4, 15} received number of

packets. The average of performance results for 50 deployed

sensors are reported in terms of number of functions calls

(NFCs), NRun number of runs, success rate (SR), and best

achieved accuracy in exact location finding (Best) in Table

II. As the results demonstrate, performance of the MDESM

algorithm is the best among the other algorithms. The

MDESM methods has SR = %99.77 with NFC = 429.46
and has achieved the error of Best = 3.06E−10 for NS = 4.

This is while for the NS = 15 has the same performance for

all the approaches. This means that increasing the number

of received samples does not help the system for to achieve

better performance.

In order to study the convergence of algorithms toward the

solution (exact location of sensor), algorithms performance

for best value achieved so far versus NFC for 4 randomly

selected sensors are presented in Figure 5.
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Fig. 5. Performance comparison among the DE, MDE, MDESM, and MDEVM algorithms for NS = 4 and population size NP = 20 for the DE
algorithm and NP = 5 for the other algorithms. Plots are scaled for better presentation.

TABLE I
PARAMETER SETTING FOR ALL CONDUCTED EXPERIMENTS, UNLESS

STATED

Name Description Value

D Problems Dimension 3

NP Population Size (DE algorithm) 20

NP Population Size (MDE algorithms) 5

Cr Crossover Probability Constant 0.9

NFCMax Maximum Number of Function Calls 1e3D

EV TR Objective Function Error Value to Reach 1E-8

NRun Number of Runs 30

TABLE II
PERFORMANCE RESULTS. THE BEST RESULTS ARE BOLDFACED.

Algorithm NS
Measure

NFC SR Best

DE
4 2965.00 9.53 2.80E-09
15 2964.00 10.27 6.60E-09

MDE
4 1315.80 62.53 4.74E-10
15 1244.20 65.13 4.75E-10

MDESM
4 429.46 99.77 3.06E-10
15 452.54 99.73 3.60E-10

MDEVM
4 2207.80 51.13 5.92E-10
15 2256.20 46.40 7.70E-10

For the sensor localization problem in WSNs, the simula-

tion results demonstrate that the MDESM method performs

much better than the other approaches. This is due to the di-

mensionality of problem which is three, where the MDESM

can provide enough diversity for the search procedure. This

is while the MDE diversity is limited for this problem and

the MDEVM and DE algorithms provide more than enough

diversity.

V. CONCLUSION AND FURTHER WORKS

In this paper a new protocol for sensor localization in

WSNs is proposed. In this approach, an unmanned aerial

vehicle (UAV) flies on the landscape where the sensors are

deployed on, and it consequently broadcasts packets while

flying. Each sensor on the landscape individually receives a

number of packets and form its localization problem as an

optimization model by replacing received data in the model.

Then, the micro-differential evolution with scalar random

mutation factor (MDESM) algorithm is utilized to solve the

problem.

The proposed protocol can be further developed for indoor

environments. In addition, since the MDESM algorithm

works based on a small population size, it can be developed

for parallel processing by assigning each individual of the

population to a nearby mote.
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